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In this study, we propose to examine the association between proteomic age acceleration and risk 
of cancer overall and by subtypes. We have an ancillary proposal (AS2021.06) entitled 
“Proteomic aging clock and cancer: Atherosclerosis Risk in Community study” approved in ARIC. 

 
Aging plays a critical role in cancer, as indicated by an increasing incidence of most cancer types 
with age.1,2 This could be explained by the accumulation of random genetic mutations and 
epigenetic alterations, weakened immune system and malfunction of repair processes in aging 
individuals.3-6 Also, growing evidence shows that individuals with cancer age faster than those 
without cancer (so called accelerated aging).7 However, it is not clear how much rate of aging 
differs between those with and without cancer, and whether this difference starts even before the 
cancer is diagnosed. These issues may be examined using aging clocks, which are a set of 
molecules capable of predicting individual’s age. Aging clocks can provide specific information 
about how old an individual is biologically, independent of the chronological age.8 Examining 
aging clocks in cancer is especially important because most cancer cases develop over a long 
period of time and have a long subclinical period, and  30%-50% of all cancer cases are 
preventable;9 thus, aging clocks could provide a new method for identifying people at high risk 
of cancer that need more frequent screening or treatment with anti-aging agents, such as 
metformin and senolytics.  
 
Several aging clocks have been created, and the most acknowledged among them is epigenetic 
clock,10,11 a set of DNA methylation-based biomarkers in blood or tissue. Epigenetic clocks have 
been shown to be correlated with chronological age in humans and may predict several health 
outcomes, including cardiovascular disease, cancer, and mortality,12-14 although the underlying 
mechanism of the age-associated DNA methylation remains unclear.15  
 
Several studies examined the epigenetic clock in relation to the incidence of cancer, including 
overall cancer and cancers of lung, breast, colorectum and pancreas.14,16-20 The Normative Aging 
Study (N = 442) found that an incorporated Hannum and Horvath age acceleration was 
associated with overall cancer (38 prostate, 50 skin, and 44 other) [HR (95% CI)= 1.06 
(1.02,1.10)].20  The Women’s Health Initiative study (N = 2029) found a one-year increase in 
Horvarth11 and PhenoAge14 clocks were statistically significantly associated with a 50% (p = 
3.4×10-3) and 5% (p = 0.031) increase in risk of lung cancer, respectively,14,16 while in the Sister 
Study (N = 2764), Hannum,10 Horvath, and PhenoAge age accelerations were statistically 
significantly associated with increased breast cancer risk with the strongest association observed 
for PhenoAge: HR (95% CI) = 1.15 (1.07, 1.23).18 However, previous findings were inconsistent 
regarding colorectal cancer (CRC) and pancreatic cancer risk when using different epigenetic 
clocks.17,19,21 For instance, EPIC-Italy study (N = 845) found an increased CRC risk in male 
associated with Horvath (P = 0.042) and FHL2 (P = 0.036) clocks, but not Hannum, Weidner, or 
ELOV2.19 A pooled analysis of Nurses’ Health study, Physician’s health study, and the Health 
Professionals Follow-up Study (N=824) found positive dose-response trends of Hannum and 
PhenoAge age accelerations with pancreatic cancer risk with a stronger association observed for 
Hannum: Q4 vs. Q1: OR (95% CI) = 1.73 (1.11, 2.71), however, for Horvath age acceleration, 
the highest OR was found in the third quartile compared to the lowest quartile.17 In summary, 
epigenetic clock showed associations with different types of cancer but the magnitude of 
associations depend on the cancer type and the clock used in the study. It is possible that 
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inconsistencies may be partially explained by the use of different type of clock and the small 
samples size of the studies.  
 
Recently, “proteomic aging clock”, which combines a set of proteomic-based aging-related 
biomarkers, has been proposed to be a potential biological age estimator. The proteomic-based 
biomarker may be a promising alternative biomarker because it, as intermediate phenotype, can 
reveal direct information on biological pathways that are involved in many of the physiological 
and pathological manifestations of aging.22,23 Using plasma to build a clock is advantageous 
because plasma proteins are easily measurable in a non-invasive way. Previous laboratory 
studies found that exposing young mice to plasma from old mice was sufficient to accelerate 
brain aging in young mice,24 and exposing aged mice to plasma from young mice could improve 
their cognitive function.25 The findings from those studies support the notion that “plasma 
proteome harbors key regulators of aging.”26 To our knowledge, there have been no studies that 
examined proteomic aging clock in relation to cancer. 
 
In this proposed study, we will construct a new proteomic aging clock using ~5000 blood 
proteins that measured by SomaScan. These proteins have been measured at 1990-1992 (Visit 2, 
N=12,589), 1993-1995 (Visit 3, N=11,340) and 2011-2013 (Visit 5, N=6538). A previous ARIC 
study has shown an excellent precision in the SomaScan assay.27 The ARIC study provides a 
unique opportunity to examine associations between proteomic-based aging biomarkers and 
cancer risk because it has already measured SomaScan biomarkers at several time points. This 
will allow us to use different approaches to build proteomic aging clocks based on the cross-
sectional association with age (a standard approach) and based on the change in aging 
biomarkers levels within the individuals (more novel approach). The availability of well-
characterized repeated data on main risk factors for cancer such as body mass index (BMI) and 
smoking will allow us to examine the impact of aging clock beyond the existing risk factors. 
 
This proposal is the first proposal in the series of proposals about proteomic age acceleration and 
cancer. Our next proposal will examine the role of age acceleration after cancer diagnosis and 
compare the association between proteomic age acceleration and mortality among individuals 
with and without cancer.  
 
 
 
5. Main Hypothesis/Study Questions: 
 
The goal of this study is to determine the contribution of proteomic age acceleration to the risk of 
cancer in the ARIC study. 
 
Hypothesis: A higher proteomic age acceleration is associated with an increased risk of overall 
cancer and specific cancer types.  
 
Specific Aim 1. Create and validate proteomic aging clock in one-half of randomly selected 
cancer-free participants in ARIC.  

SA1a. Create proteomic aging clocks.  
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We will create four different clocks based on four panels of proteins, respectively. The 
proteins in each panel will be chosen in the following way: proteins with largest intra-
individual changes in blood levels between Visits 2 and 5 (Panel 1), proteins associated with 
chronological age in a cross-sectional analysis (Panel 2), or the two panels of age-related 
proteins proposed in the latest systematic review (Panels 3 and 4). Proteomic aging clock 
will be created as one value for each individual. 
 
SA1b. Validate each of the proteomic aging clocks created in SA1a. 

 
 
Specific Aim 2. Determine the association between the pre-diagnostic proteomic age 
acceleration and the risk of overall cancer and specific cancer types 

SA2a. Determine the association of the pre-diagnostic proteomic age acceleration with the 
risk of overall cancer and most common cancers (lung, breast, colorectal, and prostate 
cancers) 
 
SA2b. Determine the association between the pre-diagnostic proteomic age acceleration and 
the risk of obesity-related cancer (oropharynx cancer, esophagus cancer, lung and bronchus 
cancer, post-menopausal breast cancer, liver cancer, gallbladder cancer, pancreas cancer, 
kidney cancer, stomach cancer, colorectal cancer, endometrial cancer, and ovarian cancer) 
and smoking-related cancer (lung/bronchus, bladder, kidney, head and neck, stomach, 
pancreatic, liver and other urinary cancers).28 

 
 

Specific Aim 1 Specific Aim 2 
Study population Study population 

Stage A: Selection of 
training set 

We will randomly select half of cancer-free 
participants at visit 5 and the same group of 
participants at Visit 2. The group of cancer-
free participants from visit 2 will be used as 
a training set and the same group of cancer-
free participants from visit 5 will be used as 
validation set.* 

The remaining cohort (after 
taking out half of cancer-free 
participants (the training set)) 
at Visit 2, and who have the 
measurement of proteins at 
Visit 2 using the SomaScan 
assay. 

Stage B: Creation of 
proteomic aging clock 
creation 

Same group of people as in the training set. 

Stage C: Validation of 
proteomic aging clock 
validation 

The randomly selected half of cancer-free 
participants from visit 5 at stage A will be 
used as validation set.   

*Of note, we assume proteomic aging clock in cancer-free participants will be the same as their chronological 
age. We randomly choose the cancer-free participants at Visit 5 first and then go back to choose the same 
group of participants visit 2 because this can make sure participants in both training set and validation set are 
cancer-free. We can also randomly choose one-half (or two-thirds) of all ARIC cancer-free participants, and 
used this group as the training set. The rest cancer-free participants will be used as the validation set. 

 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present). 
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Inclusion criteria: The analytic sample will include participants who were free of cancer at 
baseline (Visit 2), who gave consent to participate in non-CVD research, and who have the 
measurement of proteins at Visit 2 using the SomaScan assay (or who have the measurement of 
DNA methylation for the analysis of epigenetic clocks). 
 
 
Exposure: Circulating levels of proteins will be extracted from the SomaScan assay (v.4) 
(SomaLogic company).29,30 Using this assay, the ARIC study has recently measured more than 
5000 plasma proteins in frozen plasma samples collected at Visit 2 (1990-1992, N=12,589), Visit 
3 (1993-1995, N=11,340) and Visit 5 (2011-2013, N=6538) (the Bland-Altman coefficient of 
variation (CVBA) for split samples were 6% at Visit 2, 12% at Visit 3, and 7% at Visit 5). The 
proteins constituting the proteomic aging clock will be assessed at baseline (Visit 2) and updated 
at (Visit 3 and Visit 5, where appropriate). Of note, for those with cancer, only proteins measured 
before cancer diagnosis will be examined. In all the analysis, we will use the log transformed 
values of proteins. 
 
ARIC has measured DNA methylation in 2,879 Black participants and 1,100 White participants 
using biospecimens collected at Visit 2 or Visit 3. Epigenetic clocks, e.g., Hannum clock, 
Horvath clock, DNAm PhenoAge, and GrimAge, will be calculated at the time of blood 
collection, i.e., at Visit 2 or Visit 3. ARIC have been working on measuring DNA methylation in 
the full cohort. 
 
Outcome: Cancer incidence was ascertained through 2015 using state Cancer registries in 
Minnesota, North Carolina, Maryland, and Mississippi, and supplemented by abstraction of 
medical records and hospital discharge summaries.31 We will follow participants from Visit 2. A 
total of 4,407 incident cancer cases were ascertained over a maximum follow-up of 25.9 years 
(until 2015). 
 
Other covariates of interest: Demographic and clinical variables of interest such as 
chronological age, sex, race, education, BMI, collected at baseline, and updated as needed during 
follow-up will be extracted. Cancer risk factors, such as smoking status, pack-years of smoking, 
alcohol use/intake, physical activity, and diabetes, will also be extracted at Visit 2 and other 
Visits. Information about estimated glomerular filtration rate (eGFR), aspirin use, and hormone 
replacement therapy will also be extracted. 
 
Statistical analysis 
Specific Aim 1. Create and validate the proteomic aging clock in cancer-free participants in 
ARIC.  
We propose four panels of proteins constituting the clocks. We will create four different 
proteomic aging clocks based on four protein panels, respectively.  
 
Creating and validating proteomic clock will consist of three stages:  

Stage A. develop the panel (for panels 1 and 2) 
Stage B. create the proteomic aging clock (which will have one value for each individual) 
Stage C. validate the proteomic aging clock 
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Panel 1: We will develop this panel by determining proteins with largest intra-individual 
changes in blood levels over ~20 years of follow-up among ARIC cancer-free participants 
(between Visits 2 and 5). 
 

To do this, we will randomly choose one-half of all ARIC cancer-free participants at Visit 5 
and then choose the same group of participants from Visit 2. The group of cancer-free 
people at visit 2 will be used as a training set for selecting the proteins and creating the 
clock, and the same group of people at Visit 5 will be used as validation set. 
 
Of note, we choose cancer-free participants to develop a proteomic clock because our goal 
is to identify a clock that will tell us specifically about aging as a risk factors of cancer. We 
may conduct a sensitivity analysis by building a clock in healthy people and compare with 
the results with the clocks developed by cancer-free participants. People may be considered 
healthy if they are absent of any chronic disease (with the exception of controlled 
hypertension) and cognitive or functional impairment.22 We randomly choose the cancer-
free participants at Visit 5 first and then go back to choose the same group of participants 
visit 2 because this can make sure participants in both training set and validation set are 
cancer-free. The remaining cohort will be used in specific aim 2.  

 
Stage A. Using the training set, we will calculate the mean difference in levels of each 
protein between Visit 2 and Visit 5 (~ 20 years apart) and the standard deviation for each 
protein level at visit 2. Then, we will create a standardized ratio for each protein value by 
dividing the mean difference by its standard deviation. Finally, we will rank the proteins 
based on their standardized values. The top 1250 proteins (around 25% of the ~5000 
proteins) with the largest intra-individual changes in blood levels over time will be included 
in Panel 1. 
 
Of note, if we will also be able to look at proteins that have largest inter-individual change 
over time, we might include the top 1250 proteins with largest inter-individual change to 
Panel 1 if these proteins are not found to be with largest intra-individual changes.  
 
 
Stage B. In the training set, proteins from this panel will be used to fit a regression model to 
predict proteomic aging clock using multiple linear regression (MLR), Klemera and Doubal 
method (K+D method),32 or other penalized regressions, e.g., elastic net.22 Of note, one 
regression will be used for all proteins. When fitting the regression in cancer-free people, 
we will assume chronological age is a surrogate marker of the proteomic aging clock. We 
will use the regression co-efficient for each protein as its weight to build the formula to 
predict proteomic aging clock. 
 
For instance, if we use MLR to fit the regression, the formula will be: 

𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛽𝛽0 +  ∑ 𝛽𝛽𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗1250
𝑗𝑗=1   

Here, proteinj is the level of jth protein from the panel. Panel 1 includes the top 1250 
proteins with the largest intra-individual changes in blood levels, therefore, 1250 proteins 
will be included in this MLR. 
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If we use K+D method, 32 

𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 =  
∑ �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 − 𝑞𝑞𝑗𝑗�

𝑘𝑘𝑗𝑗
𝑠𝑠𝑗𝑗2

+ 𝐶𝐶
𝑠𝑠𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎2

𝑚𝑚
𝑗𝑗=1

∑ (
𝑘𝑘𝑗𝑗
𝑠𝑠𝑗𝑗

)2 + 1
𝑠𝑠𝐵𝐵2

𝑚𝑚
𝑗𝑗=1

 

The parameters in the equation will be calculated following the instructions in Klemera and 
Doubal 2006.32 
 
If we use elastic net, the formula will be: 

𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛽𝛽0 +  ∑ 𝛽𝛽𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝑚𝑚
𝑗𝑗=1   

Compared to the MLR model, the “m” proteins will be selected using the elastic net, which 
penalizes the coefficients using L1 and L2 norms.  

 
Stage C. In the validation set, we will predict proteomic aging clock for the same set of 
individuals at visit 5, multiplying their protein levels at visit 5 and the coefficients estimated 
in the training set.  
 
We will estimate the prediction accuracy of each proteomic aging clock using Pearson and 
Spearman correlations (between proteomic aging clock and chronological age) as well as by 
calculating the mean or median absolute error, i.e., the absolute difference between the 
proteomic aging clock and chronological age, in the validation set. A proteomic age 
estimator will be considered useful if its correlation with chronological age exceeds 0.7 in 
the validation set. 

 
 
Panel 2: We will develop this panel by looking at associations between chronological age and 
protein levels among ARIC cancer-free participants. 
 

Stage A. We will determine proteins associated with age using a cross-sectional analysis in 
one half of ARIC cancer-free participants as discussed in Tanaka 2018.22 In the training set, 
we will apply linear regression for each protein separately to assess the association of 
chronological age at Visit 2, after adjustment for sex, race-center, and the most important 
factors in aging, i.e., BMI and smoking status (see equation below). A false discovery rate 
(FDR) corrected threshold of P < 0.05 will be considered significant. The significant 
proteins based on FDR p-value will be included in this panel. 

 
Equation for the linear regression: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝛽𝛽0 +  𝛽𝛽1𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 
 
Here, proteini represents the ith protein in the ~5000 proteins. 
 
Stage B. The clock will be created as described in approach 1. 
Stage C. The clock will be validated as described in approach 1.  
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Of note, Proteins in Panels 1 and 2 may overlap a lot (both capturing aspects of chronological 
age, but Panel 1 should also capture proteins that change in a more extreme way that just age 
alone). 

 
Panel 3 and Panel 4: we will use two panels that were shown to be associated with aging in 
previous systematic review and validating in our population. 

 
Stage A. We will use each panel of proteins proposed in the latest systematic review of 
proteomic-based aging research.8 In the systematic review, Johnson et al. proposed two 
versions of proteomic aging clock: the 23-protein panel (Panel 3) and the 83-protein panel 
(Panel 4). The 23-protein panel and 83-protein panel included plasma proteins that were 
reported to be significantly associated with chronological age in 4+ and 3+ different studies, 
respectively. They evaluated the prediction accuracy of the two panels using Pearson and 
Spearman correlations between proteomic aging clock and chronological age, as well as by 
calculating the mean absolute delta age in the INTERVAL cohort, which comprised of 
3,301 healthy individuals aged 18-76 years with a median age of 45 (Q1 = 31, Q3 = 55).33 
They measured the proteins in those two panels using the SomaScan assay. In their 
validation set (1123 participants from the INTERVAL cohort), the 23-protein and 83-
protein panel had a Pearson correlation of 0.66 and 0.87 with chronological age, 
respectively, Spearman correlation of 0.69 and 0.88, respectively, and mean absolute delta 
age of 8.17 and 4.88 in year respectively.8  
 
Stage B. The clock will be created as described in approach 1. 
Stage C. The clock will be validated as described in approach 1. 

 
To examine association with cancer, we may choose the most robust proteomic aging clock 
based on the correlations and mean or median absolute error or apply two best proteomic aging 
clocks in the analysis of cancer risk. We will work with a statistician to decide on the best way 
for creating the clock.  
 
Since this area of research is novel and developing, we may also include senescence biomarkers 
(if they present in ARIC) that have been established as aging biomarkers in the individual studies 
of cancer, such as breast cancer,34 that have been already conducted or will be conducted during 
working on the proposed analysis. 
 
Of note, a total of 32 research publications were included the latest systematic review. All the 32 
studies measured fewer proteins (< 5000) compared to SomaScan in ARIC. Therefore, we expect 
that Panels 3 and 4 may not provide more robust results than Panels 1 and 2. We may include 
established senescence biomarkers associated with aging (if they present in ARIC) to Panels 3 
and 4 to determine if these existing panels can be improved.  
 
 
Specific Aim 2. Determine the association between the pre-diagnostic proteomic age 
acceleration and the risk of overall cancer and specific cancer types. 
 



J:\ARIC\Operations\Committees\Publications 
 

In this analysis, we will include the remaining participants at Visit 2 that are not selected in the 
training set. 
 
Proteomic age acceleration will be calculated as the residual after regressing each participant’s 
proteomic aging clock on their chronological age. A positive value of age acceleration indicates 
that the proteomic age is higher than the chronological age.35 
 
Cox proportional hazards regression will be used to calculate hazard ratios (HRs) and 95% 
confidence intervals (CIs) for cancer risk associated with proteomic age acceleration. The 
proportional hazards assumption will be tested by including an interaction term between 
proteomic age acceleration and follow-up time in the Cox model (or using graphical methods). 
Person-years will be estimated from the start of follow-up at Visit 2 until the date of cancer 
diagnosis, death, or the end of follow-up, whichever occurred first. The proteomic age 
acceleration will be examined as a continuous variable, but will be transformed or categorized 
into quartiles if a nonlinear relationship with cancer risk is observed. To account for the change 
of proteomic age acceleration during follow-up, we will model proteomic age acceleration as a 
time-dependent variable, which is defined as a variable whose value for a given subject may 
change over time. We will adjust for age, sex, race-center, eGFR, and liver function in the 
analysis. We will also adjust for BMI, smoking status, pack-years of smoking, diabetes, aspirin 
use, and hormone replacement therapy, to determine whether the accelerated aging clocks are 
simply capturing cancer risk factors. We may also adjust socioeconomic status (SES), because 
those of lower SES may have less access to care/less access to medications to treat/cure diseases, 
so the aging clocks that may end up differing. 
 
 
We will also compare whether or not the associations between proteomic aging clock and cancer 
risk are similar to the associations between epigenetic clocks and cancer risk.  We will calculate 
epigenetic clocks, e.g., Hannum clock, Horvath clock, DNAm PhenoAge, and GrimAge, using 
the available DNA methylation data in ARIC. We will follow the same method described in the 
analysis of proteomic aging clock to calculate epigenetic age acceleration and examine the 
association between epigenetic age acceleration and cancer risk. ARIC has been working on 
measuring methylation data in the full cohort. We will calculate the epigenetic clocks in the full 
cohort when the data is available. 
 
 
Power calculations 
Specific Aim 1. The sample size that is needed for validating an age estimator depends on the 
accuracy of the age estimator. Based on Horvath et al.,36 62 test samples would need if a true 
correlation is 0.9. A sample of 205, 404, and 867 would need to test a true correlation of 0.80, 
0.70, and 0.50, respectively. We expect to have 2896 cancer-free participants from Visit 2 used 
as the training set and 2896 cancer-free participants from Visit 5 used as the validation set.  
 
Specific Aim 2. The power calculations with cancer incidence up to 2015 are presented in Tables 
1 and 2 for Specific Aim 2. Categorizing into groups is a conservative approach to estimate 
power for a continuous variable. Thus, in Specific Aims 1 and 2, we will estimate power for the 
two situations below: a) dichotomize proteomic age acceleration (or epigenetic age acceleration) 



J:\ARIC\Operations\Committees\Publications 
 

at median (higher and lower groups), and b) categorize proteomic age acceleration (or epigenetic 
age acceleration) at quartiles (Q1, Q2, Q3, and Q4) based on its distribution at V2. 
 

Table 1. Power calculation in ARIC participants (80% power, alpha = 0.05, two-sided) for the association between pre-
diagnosis proteomic age acceleration and overall cancer risk, most common individual cancer risk, obesity-related cancer 
risk, and smoking-related cancer risk 
Cancer type Number of 

cancer cases 
Number of all 
participantsa 

Minimal detectable risk for 
dichotomized exposure 

Minimal detectable 
risk for quartiles 

Any cancer 4,407 9,693 1.13 1.18 
Breast cancer 621 9,693 1.37 1.57 
Ovarian cancer 68 9,693 2.62 3.89 
Endometrial cancer 115 9,693 2.09 2.83 
Kidney cancer 145 9,693 1.93 2.53 
CRC 411 9,693 1.48 1.74 
Pancreatic cancer 136 9,693 1.97 2.62 
Lung cancer 680 9,693 135 1.54 
Obesity-related cancerb 1,605 9,693 1.22 1.32 
Smoking-related cancerc 1,328 9,693 1.24 1.36 
aThe number of all participants at Visit 2 is 9,693 because we use 2896 cancer-free participants to develop the clock. 
bThe number of obesity-related cancer is calculated by combining the number breast (n = 621), colorectal (n = 411), 
endometrial (n = 115), ovarian (n = 68), kidney (n = 145), pancreatic (n = 136) cancers, liver cancer (n = 36), and lethal 
prostate cancer (approximately 100 cases). 
cThe number of smoking-related cancer is calculated by combining the number lung (n = 680), pancreatic (n = 136), 
esophageal (approximately 35 cases), bladder (n = 204), stomach (n = 67), liver (n = 36), cervix (n = 25), and kidney 
cancers. 

 
Table 2. Power calculation in ARIC participants (80% power, alpha = 0.05, two-sided) for the association between pre-
diagnosis epigenetic age acceleration and overall cancer riska 
Cancer type Number of 

cancer cases 
Number of all 
participantsb 

Minimal detectable risk for 
dichotomized exposure 

Minimal detectable 
risk for quartiles 

Any cancer 939 3,625 1.20 1.30 
aThe power calculation was based on the 3,625 pariticpants without prevalent cancer at the time of blood collection (Visit 
2 or Visit 3) and with DNA methylation measured. 

 
 
7.a. Will the data be used for non-ARIC analysis or by a for-profit organization in this 
manuscript? ____ Yes    _X__ No 
 
 b. If Yes, is the author aware that the current derived consent file ICTDER05 must be 

used to exclude persons with a value RES_OTH and/or RES_DNA = “ARIC only”  
and/or “Not for Profit” ? ____ Yes    ____ No 
(The file ICTDER has been distributed to ARIC PIs, and contains  
the responses to consent updates related to stored sample use for research.) 

 
8.a. Will the DNA data be used in this manuscript? ____ Yes    __X__ No 
 
8.b. If yes, is the author aware that either DNA data distributed by the Coordinating 

Center must be used, or the current derived consent file ICTDER05 must be used to 
exclude those with value RES_DNA = “No use/storage DNA”? ____ Yes    ____ No 

 
9. The lead author of this manuscript proposal has reviewed the list of existing ARIC 

Study manuscript proposals and has found no overlap between this proposal and 
previously approved manuscript proposals either published or still in active status.  
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ARIC Investigators have access to the publications lists under the Study Members Area of 
the web site at:  http://www.cscc.unc.edu/aric/mantrack/maintain/search/dtSearch.html  

 
__X___ Yes     _______ No 

 
10. What are the most related manuscript proposals in ARIC (authors are encouraged to 
contact lead authors of these proposals for comments on the new proposal or 
collaboration)? 
 

MP3515 A comparison of the inflammatory proteome in cancer survivors and individuals 
with no cancer history. 

  MP3482 Plasma Proteins and All-Cause Mortality in Cancer Survivors in ARIC 
(MP3515 is a subset of MP3482 for a doctoral dissertation) 

 
MP3057 Repeatability and Longitudinal Variability of the Plasma Proteome. 
MP3617 Association between functional MICA polymorphisms, soluble MICA levels, 
colorectal cancer incidence and mortality: Results from the Atherosclerosis Risk in 
Communities study. 
 
 
 
 

11.a. Is this manuscript proposal associated with any ARIC ancillary studies or use any 
ancillary study data? __X__ Yes    ____ No 
 
11.b. If yes, is the proposal  
_X__  A. primarily the result of an ancillary study (list number* _ 
AS1995.04 Cancer Study 
AS2011.07 Enhancing ARIC Infrastructure to Yield a New Cancer Epidemiology Cohort 
AS2017.27 Proteomic longitudinal ARIC study: SOMAscan of multiple visits 
AS2019.15 MHC class I chain-related proteins, functional polymorphism and colorectal cancer  
AS2020.32 Proteomic Aging Clock and Colorectal Cancer 
 

_X__  B. primarily based on ARIC data with ancillary data playing a minor role 
(usually control variables; list number(s)* ___ __________ __________) 

 
*ancillary studies are listed by number https://sites.cscc.unc.edu/aric/approved-ancillary-studies 
 
12a. Manuscript preparation is expected to be completed in one to three years.  If a 
manuscript is not submitted for ARIC review at the end of the 3-years from the date of the 
approval, the manuscript proposal will expire. 
 
12b. The NIH instituted a Public Access Policy in April, 2008 which ensures that the public 
has access to the published results of NIH funded research.  It is your responsibility to upload 
manuscripts to PubMed Central whenever the journal does not and be in compliance with this 
policy.  Four files about the public access policy from http://publicaccess.nih.gov/ are posted in 

http://www.cscc.unc.edu/aric/mantrack/maintain/search/dtSearch.html
https://sites.cscc.unc.edu/aric/approved-ancillary-studies
http://publicaccess.nih.gov/
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http://www.cscc.unc.edu/aric/index.php, under Publications, Policies & Forms. 
http://publicaccess.nih.gov/submit_process_journals.htm shows you which journals 
automatically upload articles to PubMed central. 
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